How to authenticate MS

Azure and Azure AD /ARM
using Graph API call for
Bearer Token

EXAMPLES
& SOLUTIONS

THE

7 =dw)

PEOPLE

Introduction

Table of Prerequisites

Contents 3. Proper Confiquration Within
ServiceNow Instance
d. HTTPS Request
b. Flow Action

N =

4. Security
5. Summary

° ServiceNow has created basic SAML authentication for Azure AD users to allow
I n t ro d u Ct I 0 n specific users to login using their Azure credentials, but unfortunately in & out data
flow configuration through API is scattered across different tables and not intuitive
enough to quickly setup API integration for example to update CMDB entries.
Installation of proper spoke in the IntegrationHub kind of solves the problem,
however some data cannot be gathered from Azure spokes, or type of
authentication is not granting proper access to particular resources. That is why, to
workaround such a case, we need to go through oauth with additional bearer token
authentication. Another advantage of the solution is that any resources can be
accessible this way, even without installing additional spokes, but it still requires

proper permissions and roles from the Azure side.

THE

Cl.0sD

PEOPLE

Introduction

CHAPTER 2
Prerequisites

First, and the most important thing to start with when creating this
solution on ServiceNow level, is to make sure that the azure
admin is properly set up with all permissions and roles required
to read or manipulate specific data. It's very important because
we, and azure admins, have to differentiate between delegated
and application permissions. The first one requires initiating a
session by properly granted users. For the application permission
however, any user can access data, but the API requests must
be sent from the one of the granted applications - in our case
from the ServiceNow instance. Before you start doing proper
configuration, you need to understand the requirements and
agree with your team which way is actually better for your setup.

Another thing that is not “must have”, but really helpful for dealing
with API calls, is to have an IntegrationHub license which is not a
starter.

This will make the whole process much easier to develop instead
of using normal and free actions. OOTB starter subscription
doesn’t process REST calls, but you can do via scripted
restmessagev?2 call using script step within the action.

Another smart move is to get any API builder platform such as
Postman, which will help you test the endpoints and API calls.

THE

Cl.OsD

PEOPLE

Chapter 2

And last, but not least, are the attributes by which you will
authenticate with azure - accesses are the most important part.
But if we make API calls without the proper body, it will return
with nothing because we didn’t pass information about resource
ID from where we want to fetch data for example. Below is the
minimum that you have to get from azure admin to get in
successfully:

1. grant_type - always has to be “client_credentials” to
properly format the rest of the request body and headers

2. client_id - it's the sys_id of our application in azure

3. client_secret - it's a password by other words. Usually it's
randomly generated but also can be encoded.

4, resource - simply it's the constant url after which we will
be adding queries. Usually it's
https://graph.microsoft.com/ but for some resources it
can differ.

5. tenantID - it's the ID of the environment (database) from
where we want to gather data

To start fetching or updating resources you have to authenticate
using the schema:
https://login.microsoftonline.com/{{TENANT_ID_HERE}}/oauth2/token
and rest of the above parameters pass as a body of your query.

DESCRIPTION

uuuuuuuuuuu

https://graph.microsoft.com/
https://login.microsoftonline.com/%7B%7BYour

CHAPTER 3
Proper Configuration

W ithin ServiceNow
Instance

If all Prerequisites have been done and set up properly, you should
receive the bearer token without any issues. However, the whole
solution still needs to be moved to the client ServiceNow instance to
have it fully automated and integrated with further integration tasks
and actions.

Depending on how the configuration is built, there are two ways of how
we can actually receive and later store bearer token before it expires -
HTTP Request from Rest Messages table and by using flow action.

THE

Cl.0sD

PEOPLE

Chapter 3

= *
Orchestration

W Activity Dependencies

REST Messages

System Web Services

¥V Outbound

REST Message

All

= Name A

Search

Accurate Background Check API

AzureCog

CTS Send Attachments

Firebase Cloud Messaging Send

ServiceNowMobileApp Push

Description

Search

Accurate Background Check API

Connect with Cognizant to get Azure serv...

= Endpoint

Search

https://api.accuratebackground.com/v3

https://appglmgmtweuonboarding-apis-fa.a...

https://integrator-dev.cognizantgoc.com/...

https://fcm.googleapis.com/fcm/send

https://${pushHost}/api/now/v1/push/S{ap...

Chapter 3

Name newly created Rest Message record and copy endpoint Now the most important part where you set up the whole body
from the postman URL and create new HTTP POST Method. For and header is needed. To make sure all parameters will be
both, in the authentication field use No Authentication. For the passed properly, | strongly recommend to use Postman Code
HTTP Method endpoint, it is not needed as it will be inherited Snippet functionality from where it can be set up in which form
from the parent by default in this case. the API call is created. In our case it's HTTP.

< = Tngreum @ T oo Upsse pdete

> Endpoint | hitps:/loginmicrosoftonline.com AP .. 12, token

Authentication | HTTP Request

REST Messages support the following Authentication types:
+ Basicauthentication
+ Mutual (two-way authentication)
+ OAuth20

M ill pl TP Method:

Moreinfo

Authentication type No authentication v Use mutual authentication

7

Update | Delete

[T RESTMessage=Testing Rest AUTH

& O =Name = HTTP method = endpoint
POST AUTH posT
Actionson selected rows; v 1 tolofl

THE

Cl.OsD

PEOPLE

Chapter 3

Now it’s the time to pass all gathered details directly to the REST
Message. Because previously on the postman, the POST call
was made in x-www-form-urlencoded, the same format must
be sent from ServiceNow. To achieve the proper header to be
provided, you need to copy the body of our message from the
Code snippet to the content field and save it. Then you can
check if everything has been set up correctly by doing a simple
test call, and see if we receive a bearer token as a response.

POST

nor

s Q

KEY

grant_type

client_id

client_secret

resource

Get AAD Token

Get AAD Token

https://login.microsoftonline.com/TENANT ID/oauth2/token

e form-data

Headers

Body ®

x-www-form-urlencoded

JSON

raw

quest Script Tests @

binary GraphQL
VALUE
client_credentials

U:’d Save v =
E
Cookies />
DESCRIPTION oo0 Bulk Edit

2 KB Save Response v

0O Q

Azure REST

Code snippet

HTTP

o)

POST /TENANT ID/oauth2/token HTTP/1.1

Host: login.microsoftonline.com

Content-Type: application/
x-wwvi-form-urlencoded

Cookie:

fpe=AvYrwutNIwtPqQZoxnBNpET-Twa_AQAAAL

bQEdkOAAAA; stsservicecookie=estsid;

x-ms-gateway-slice=estsid
Content-Length: 171

grant_type=client_credentials&
client_id=Tnnm
SRS | i cnt_secret=puiifkinmihin
fese=rmnasnamannnas s
resource=https¥3A¥2F¥2Fgraph.
microsoft.com®2F

Chapter 3

10

Response

{"token_type™:"Bearer","expires_in":"3599""ext_expires_in":"3599""expires_on":"1635777400""not_before":"1635773500","resource":"https://graph.microsoft.com/""access_token":"eyJ0eXAiOiJKV
1QiLCJub25jZSI61IZnMHVPMWhpUkpIR3FKUGIEMWN JU1RaU3VBTjlYNTBDZ09idy10LWkOckkiLCJhbGciOiJSUzIINilsing1dCl6imwzc LEtNTBjQOg0eE JWWKxIVEd 3bINSNzYAMCIsimtpZCl6imwzc1EtNTB)
Q0g0eEJWWkxIVEd3bINSNZY4MCJ9.eyJhdWQiOiJodHRwczovlL 2dyYXBoLm1pY3Jvc29mdC5jb20viiwiaXNzljoiaHROCHM6Ly9zdHMud21uZG93cy5uZXQuNThiMzBkYzItZDdmZS000 DVhLWIhMzEtNmRjMz
VhYzRhZTZhLylsimlhdCI6MTYzNTc3MzUwMCwibmJmijoxNjM1NzczNTAWLCJleHAIOjE2MzU3NzcOMDAsImFpbyl61kUyWmdZRWd3WTVQMVdyNO1mbUxCTEIrWKY2UXpBUTOSIiwiYXBwX2Rpc3BsYXIuYW1
lljoiu2VvydmljZWSvdyBBUEKgUH JVZCIsimFwcGlkljoiZjUwNzc4YWUtYTIhOCOOOWRKLTKSMDItMGE 1YWYwNTJkMmNkIiwiYXBwaWRhY3liOilxliwiaWRwljoiaHROCHM6Ly9zdHMud2luZG93cy5uZXQVNThIM
zBkYzItZDdmZS000 DVhLWJhMzEtNmRjMzVhYzRhZTZhLylsimlkdHIwljoiYXBwliwib21kljoiMTdhMGFhMzgtYTc20S0ONmMRjLWI2NzctZjgwODg1YTc3N2NmliwicmgiOilwLKFWMEF3ZzNqV1A3WFdraTZNVzZNE
V3NTdWFXNTRCX1dveWQxSm1RSUtXdkJTMHMxZEFBQS4iLCJyb2xlcyl6WyJEaXJIY3RvenkuUmVhZFdyaXRILkFsbCJdLCJzdWIiOilxN2EwYWEzOC1hNzY5LTQ2ZGMtYjY3Ny1mODA40DVhNzc3Y2YiLCJOZW
ShbnRfcmVnaW9uX3Njb3BlIjoiRVUILCJ0aWQiOil10GUzMGRjMi1kN2ZILTQ4NWEtYmEzMS02ZGMzNWFjNGFINmMEILCJ1dGkiOiJyS1BXM1AybVNrR3JLXIN1SG1WQkFBliwidmVyljoiMSawliwid2lkcyl6Wylw
OTk3YTFKMCOWZDFKLTRhY2ItYjQwOC1kNWNhNzMxMjFIOTAIXSwieG1zX3RjZHQIOjE10DgxNjE3MzRI.sALEigmadGbTadRLGjcvisshm7W6EImkrhVTVilRrvil_095HAKCO3CqV_aBkAPmqK3kqodBD16THyx
2TJdPILIwfdG8qCBM3L6iuchR_10MgJn_DjWKoheDGj_baNz53ItHxqS0v8YSPponfuOn1wGdQrHbEgDM3n2WPu_VKM8ulrlgdZqWLISpHAbKeINI6RjbVHWEBEQVINV]TYB2MQ4_3L2io_2fXtYMdKo9PEgbEI
_bTTpXU_tmZYDmdEzSBxS1bd2bY2cfZOnHWPKSJIzttSFFANGhK]EJVTWIQg4 TKqXVMXgoVVRazBz-L SETZTmmYgrOtxNICPLRATBoj9g")

If received response is similar to the screenshot above it means = DL e
all went ok and you have given access to the azure resources for

Params Authorization Headers (7) Body Pre-request Script Tests Settings
3599 seconds (1 hour). From now on to fetch the data, you have > Rt ’ ’

. . . « 8 Host ©® <calculated when request is sent>

to pass authorization header with the value “Bearer {Generated :

User-Agent @ PostmanRuntime/7.28.4
Bearer Token}’ on each HTTP GET/POST message. o =

ccept @ !

Accept-Encoding @ gzip, deflate, br
IMPORTANT: Before you pass the bearer token you have Connection ® keep-aiive
generated in the header you have to add “Bearer” space Authorization Bearer {{bearerToken))
there! —

THE

Cl.0sD

Chapter 3

B) Flow Action

Generating bearer token through flow action gives more OOTB possibilities, but also
requires a little different configuration, which can confuse at first glance. Some
additional steps are required to input/process/output the whole authorization
process. If the whole integration goes through flow from A to Z, you have to
remember what should come into the flow action and what should come out, to
successfully pass a token to the further actions.

To increase security, configuration in our case takes all parameters from the
application registry table, where client secret value is encrypted, and by using input
type Password (2 Way Encrypted) it's impossible to catch client secret password
from any logs. On the next page you will find an example of how to do that.

THE

Cl.0sD

PEOPLE

Chapter 3

12

First, open the application registry table (oauth_entity) and create
a new record. There are few options to choose from, but the 3rd
option fits our needs the most. So | recommend to choose
“Connect to a third party OAuth Provider”. Then provide all
mandatory fields. Notice that once you set up a client secret it will
be encrypted as long as you toggle it to view it's content, without
a specific role to the table, and write access to the records. No
one is able to see it’s value.

= * () Y s Ape=OAuthClient .or. Type = OAuth Provider

b3 Name A = Active
System Applications
ADFS true
Application Restricted Caller Ac...
Auth0 true
System OAuth

Azure AD true
Application Registry

Google true

= Type

External OIDC Provider

External OIDC Provider

External OIDC Provider

External OIDC Provider

= ClientID = Comments

{adfds-application-client-identifier-here}

{autho-application-client-id-here}

{azure-ad-application-id-here}

{google-application-client-identifier-here}

1 tol0of10

What kind of OAuth application?

Create an OAuth API endpoint for external clients
Create an OAuth JWT APl endpoint for external clients
Connect to a third party OAuth Provider

Configure an OIDC provider to verify ID tokens.

Connect to an OAuth Provider (simplified)

THE

Cl.0sD

PEOPLE

Chapter 3

< == Application Registries
= TestAuth [OAuth Provider view]

OAuth provider details.
* Name: A unique name.
« Client ID: Client ID of application registered in third-party OAuth server.
« Client Secret: Client secret of application registered in third-party OAuth server.
 Refresh Token Lifespan: Time in seconds the Refresh Token will be valid.
« Authorization URL: OAuth Server's auth code flow endpoint. Required only for Authorization Code grant type.
Token URL: OAuth Server's token endpoint.
» Token Revocation URL: OAuth Server's token revocation endpoint.
* Redirect URL: OAuth callback endpoint. Leave it empty for auto-generation.

% Name Test Auth
*k ClientID esagse—
>k Client Secret sesssnse 8
OAuth API Script Q
Logo URL 2
>k Default Grant type Authorization Code v
>k Refresh Token Lifespan 8,640,000

Public Client

Comments

,f 25 oo Update
=

Application Global ®
Accessible from All application scopes v
Active v
ion URL https://login.mic ine.com /ftetes NI
>k Token URL https://login.microsoftonline.com fifwhteiniwiifettion
im0 2 th2 /token
Token Revocation URL &
Redirect URL https:/, ervice-now.c th redirect.do &

Use mutual authentication

Send Credentials In Request Body (Form URL-Encoded) v

Now, open flow designer and create a new action, name it and
prepare inputs that will be passed to the action. As an input, use
strings with all body parameters needed to send a rest message.

13

Following the security - client secret input variable change to
“Password (2 Way Encrypted”. This will make sure that logs will
show only asterisks instead of the value. Remember also to look
up first in the flow record with all details that were created in the
previous step - you can use sys_id for instant matches.

Chapter 3

14

ACTIONS

1 @ Look Up Application Registries Record @

Action | Look Up Record -

able | Application Registries [oauth_entity] X v |

All of these conditions must be met

Sys ID - is ~|| 40892623108f781055365fde5abcb9b OR AND fio

o

New Criteria

v & atoz -
Return only the first record v ||®
found action
Don't fail on error F]
Delete Cancel Done
>
2 @ Azure Bearer Token
TIgger=RunToy
ACTIONS

Application Registries Record where

1 @ Look U
2 @ Azure Bearer Token @

Action | Azure Bearer Token

https://graph.microsoft.com/

(1> appiication Registries Record » Client D X))

—

=
1» Application Registries Record » Client secret X)

Date/Time

Add a Stage
o ww

Record
Table
Choice
(string

¥ 2 - Azure Bearer Token
» bject

v 3-getusers

Delete Cancel Done -
nteger

Chapter 3

&> | Azure Bearer Token

Action Outline Action Input
-] Inputs
L+ | Label Name
REST step
1 Resh pest
« g Tenant tenant
2 { - } JSON Parser step
O SSON ROtSer i Resource resource
<3
5 Outputs
Client_Id client_id
Secret secret

Properties Test Executio|

® Create Input

Type Mandatory
String v .:] W v
String v .:] W v
String v .:] o v
Password (2 Way.. « .3 W v

15

Once all inputs are ready to be passed on further, you should
create a REST step from the action steps left in the menu to
process received data.

Here in the REST Step, you do the most important part which is
almost a reflection of what has been done before in HTTP
Message.

Rest step gives a few more options which will allow you to
diversify the solution and automate some data, except manually
providing it to the action, for example by using credential & alias
record. This example shows manually built rest API call, because
we here decided to have this value hardcoded instead of jumping
between tables and records.

THE

Cl.0sD

PEOPLE

Chapter 3

16

To build Endpoint URL manually it's enough to choose “Define
connection inline”, which lets you type base url and doesn’t
require the use of credential alias. If the integration goes through
multiple tenants it’s good to put the rest of the endpoint url within
the “Resource path” where you can pass incoming tenants as a
parameter from the data pill. Obviously everything can be done
under the base URL field, but in my case some messages were
throwing errors. | could not find out why it behaved like that. The
HTTP Method is the POST like in the previous example. This is
an interesting thing, because in comparison to the previously
built Rest Message, Rest step within flow actions successfully
process JSON payloads which makes building a Message much
more efficient and friendly. If for some reason there needs to be
url-specific, there is a possibility to change request type from
“Multipart” (which supports JSON) to “text” and use values
generated from postman code snippet.

1. REST step

Connection Details @

BasoURL | hitpsifloginmicrosoftoniine.com/

Request Details @

Request Content
Request Type | Multipart

Name Type

grant_type application/json

value

Value

Chapter 3

Now, to have a well formatted JSSON response, additional step Remember that a source data always has a response body
called “JSON Parser Step” is a must. Otherwise the response will which contains needed values. Paste the whole payload you

be in unreadable format and the response wouldn’t be passed receive after getting a token and click “Generate Target”. This will
further. This step is simple, but in my opinion not intuitive enough generate a fully parsed, formatted and structured hierarchy of

by first glance. your JSON response. Thanks to this, the response will be shown

on the data pill and can be transferred as an output of the action.

2. JSON Parser step ssonrarser 53} pata >
v Input Variables
Source Target Clear All Exit Edit Mode
Tenant \I ng
urce data (step > REST step » Response Body x) CES Generate Target
Label Name Type Mandatory
1 ("tckenit;pe“:"Eearer",‘e’-.pi'es;_r"‘:"3599",'ext_e:-tpir‘es‘::‘":"3599“,‘e:r:pi"esvcn":‘1525745811",%0':_:5'5_. - root root Object - ® W v
token_type token_type String . | ¥ v
») Objex
L (am | - ==

17

Chapter 3

At last, the only thing left is to create a new object-type variable
and pass the generated root target from the previous action step.
This will generate a full structure of response and allows passing
output to other actions to authenticate next actions.

Action Output
Label Value

2
t ([step » JSONP

Data

v Input Variables

18

THE

Cl.OsD

PEOPLE

Chapter 3

How to pass action output further within the flow? Once the
output and whole action is saved, published and selected in the
flow, it should be visible onto the data pill panel and by drag &
drop. Simply pass a token to the other action’s input field and
then from the input, pass it directly to the Rest message header.

For Each Item in get users list ©

Action | get users list

+ access_token | (2 targetobject » access_token

@
1o
=]
Q

Delete Cancel

Connection Details @

Connection Use Connection Alias
Connection Alias MOVE___Azure _AD_second_tenant
Base URL | https://graph.microsoft.com/

Request Details @

Build Request Manually

: = N
Resource Path (_ step » Pagination Setup step » nextlink X)

HTTP Method GET

i Name

Paramete

Headers Name

Authorization

Value
Value

————
N Bearer (action » access_token X)
N S)

X
4

+
©
E
P

v Input Variables
(¥

» Pagination Setup step
» REST step

» Splitter step

» Script Parser step

» Output Variables

string

19

THE

Cl.OsD

PEOPLE

CHAPTER 4
Security

Some people may ask if doing authentication this way is secure
enough if you are dealing with internal customer data and the
answer to that question is - No, it's not secured enough, but
there is no security that you cannot break. If we take a look on
the presented solution, there are actually some levels of security
but mainly done by the Microsoft Azure environment:

1. Bearer token and the default short lifespan (1h)

Authentication which requires at least 3 unique

parameters to authenticate (client id, tenant id, client

secret)

Encrypted token

4. Application and delegated access types which
depends of the needs and accessibility can be
restricted

@

There is a high chance that even if someone gets the whole
bearer token key, it can already be expired and it's working only
for a specific session. Token changes every time a client secret is
an equivalent of giving someone’s password - we should let such

If | would have to choose a more secure solution from those two,
only by trusting OOTB functionalities, | would recommend getting
token by using flow. Depending on the requirements, it's possible
to build using Rest HTTP Messages. Does this means that we
are out of options for this one? Absolutely not. Obviously it's
harder to manage, develop and probably it will require some
additional scripts. If we as developers want to create a secure
solution, we can use for example the well working
GlideEncrypter.
(https://docs.servicenow.com/bundle/rome-application-developm
ent/page/app-store/dev_portal/AP|_reference/GlideEncrypter/con
cept/GlideEncrypterAPIL.html?cshalt=yes)

The advantage of using GlideEncrypter is that instead of
hardcoding values within HTTP Messages, there is a way to run
API calls directly from the script, and include and pass value to
the body of our message in an encrypted way.

THE

things be easily accessed.

Cl.OsD

PEOPLE

https://docs.servicenow.com/bundle/rome-application-development/page/app-store/dev_portal/API_reference/GlideEncrypter/concept/GlideEncrypterAPI.html?cshalt=yes
https://docs.servicenow.com/bundle/rome-application-development/page/app-store/dev_portal/API_reference/GlideEncrypter/concept/GlideEncrypterAPI.html?cshalt=yes
https://docs.servicenow.com/bundle/rome-application-development/page/app-store/dev_portal/API_reference/GlideEncrypter/concept/GlideEncrypterAPI.html?cshalt=yes

Chapter 4

21

From the ServiceNow perspective, the most susceptible data in One of the security improvements has been provided by using
such authentication type is to leave parameters unprotected application registry to at least hide client secret password and
which has the biggest impact on the Azure security. So it's then make 2 Way encrypted input within the flow, which is
important to additionally protect, hide and encrypt sensitive data. returning encrypted value.

What we can do as developers and from a ServiceNow
perspective, is to make access to this data as hard as possible.
Not only rely on the access controls and role-based structure,
because even without admin role, some tables, logs and flow
executions are at least readable. This is causing a high risk of
giving access to for example the client secret to undesirable
persons. For some it might be gibberish, but for some a potential
backdoor to strike.

0-d3e8-4d14-9%e8c

ARIABLE NAME

Tenant String)-d3e8-4d14-9e8c-f016576f5f08 f016576f5f08
Resource String /graph.microsoft.com/ http! raph.microsoft.co
Client rin (N 437: 5-lc4e-4429-868d-alf6f23b26c5
lient_id String (1 » Application Registries Record » Client ID) 2 Icde-4429-86 026G
P W (2 Wav 7 N ke
Eatie zg?s‘ Dol e (1 » Application Registries Record » Client Secret)
)

As it turns out, Microsoft and ServiceNow can deliver massive and well-working

Summary

solutions, but even such big players can’t predict all possible cases and sometimes
some of them are not worth developing. In such cases, we as developers are
obligated to solve these challenges and leave official documentation and standards,
to rather create our own solutions based on our experience and different best
practices built ourselves. Presented solution, if continuously developed, may
someday be considered as a real solution, even for bigger players on the market. It
is also good to have a backup if traditional solutions are failing. With some practice it
can also give as an advantage by delivering your own secured solution, which

definitely will make you visible for others in the global market.

THE

Cl.0sD

PEOPLE

Want to learn more?

2

Contact the Cloud People

info@thecloudpeople.com
www.thecloudpeople.com

The Cloud People is a certified ServiceNow and Google Cloud Platform
Partner, and authorized Google Workspace (earlier G Suite) Reseller. We
help and guide organizations transform their business to the cloud and
gain and utilize the competitive advantages from one of the best cloud
platform solutions on the market today.

2
:
?

26

mailto:info@thecloudpeople.com
http://www.thecloudpeople.com

