
How to authenticate MS Azure and
Azure AD /ARM using Graph API call
for Bearer Token

1

Table of
Contents

1. Introduction
2. Prerequisites
3. Proper Configuration Within

ServiceNow Instance
a. HTTPS Request

b. Flow Action

4. Security
5. Summary

2

ServiceNow has created basic SAML authentication for Azure AD users to allow

specific users to login using their Azure credentials, but unfortunately in & out data

flow configuration through API is scattered across different tables and not intuitive

enough to quickly setup API integration for example to update CMDB entries.

Installation of proper spoke in the IntegrationHub kind of solves the problem,

however some data cannot be gathered from Azure spokes, or type of

authentication is not granting proper access to particular resources. That is why, to

workaround such a case, we need to go through oauth with additional bearer token

authentication. Another advantage of the solution is that any resources can be

accessible this way, even without installing additional spokes, but it still requires

proper permissions and roles from the Azure side.

3

Introduction

3

CHAPTER 2

Prerequisites

First, and the most important thing to start with when creating this
solution on ServiceNow level, is to make sure that the azure
admin is properly set up with all permissions and roles required
to read or manipulate specific data. It’s very important because
we, and azure admins, have to differentiate between delegated
and application permissions. The first one requires initiating a
session by properly granted users. For the application permission
however, any user can access data, but the API requests must
be sent from the one of the granted applications - in our case
from the ServiceNow instance. Before you start doing proper
configuration, you need to understand the requirements and
agree with your team which way is actually better for your setup.

Another thing that is not “must have”, but really helpful for dealing
with API calls, is to have an IntegrationHub license which is not a
starter.

This will make the whole process much easier to develop instead
of using normal and free actions. OOTB starter subscription
doesn’t process REST calls, but you can do via scripted
restmessagev2 call using script step within the action.

Another smart move is to get any API builder platform such as
Postman, which will help you test the endpoints and API calls.

4

Introduction

And last, but not least, are the attributes by which you will
authenticate with azure - accesses are the most important part.
But if we make API calls without the proper body, it will return
with nothing because we didn’t pass information about resource
ID from where we want to fetch data for example. Below is the
minimum that you have to get from azure admin to get in
successfully:

1. grant_type - always has to be “client_credentials” to
properly format the rest of the request body and headers

2. client_id - it’s the sys_id of our application in azure
3. client_secret - it’s a password by other words. Usually it’s

randomly generated but also can be encoded.
4. resource - simply it’s the constant url after which we will

be adding queries. Usually it’s
https://graph.microsoft.com/ but for some resources it
can differ.

5. tenantID - it’s the ID of the environment (database) from
where we want to gather data

To start fetching or updating resources you have to authenticate
using the schema:
https://login.microsoftonline.com/{{TENANT_ID_HERE}}/oauth2/token
and rest of the above parameters pass as a body of your query.

5

IChapter 2

https://graph.microsoft.com/
https://login.microsoftonline.com/%7B%7BYour

CHAPTER 3

Proper Configuration
Within ServiceNow
Instance

If all Prerequisites have been done and set up properly, you should
receive the bearer token without any issues. However, the whole
solution still needs to be moved to the client ServiceNow instance to
have it fully automated and integrated with further integration tasks
and actions.

Depending on how the configuration is built, there are two ways of how
we can actually receive and later store bearer token before it expires -
HTTP Request from Rest Messages table and by using flow action.

66

7

Chapter 3

AՅ HTTPS Request
Open Rest Messages table and create new record

Name newly created Rest Message record and copy endpoint
from the postman URL and create new HTTP POST Method. For
both, in the authentication field use No Authentication. For the
HTTP Method endpoint, it is not needed as it will be inherited
from the parent by default in this case.

Now the most important part where you set up the whole body
and header is needed. To make sure all parameters will be
passed properly, I strongly recommend to use Postman Code
Snippet functionality from where it can be set up in which form
the API call is created. In our case it’s HTTP.

8

Chapter 3

Now it’s the time to pass all gathered details directly to the REST
Message. Because previously on the postman, the POST call
was made in x-www-form-urlencoded, the same format must
be sent from ServiceNow. To achieve the proper header to be
provided, you need to copy the body of our message from the
Code snippet to the content field and save it. Then you can
check if everything has been set up correctly by doing a simple
test call, and see if we receive a bearer token as a response.

9

Chapter 3

If received response is similar to the screenshot above it means
all went ok and you have given access to the azure resources for
3599 seconds (1 hour). From now on to fetch the data, you have
to pass authorization header with the value “Bearer {Generated
Bearer Token}” on each HTTP GET/POST message.

IMPORTANT: Before you pass the bearer token you have
generated in the header you have to add “Bearer” space
there!

10

Chapter 3

Generating bearer token through flow action gives more OOTB possibilities, but also
requires a little different configuration, which can confuse at first glance. Some
additional steps are required to input/process/output the whole authorization
process. If the whole integration goes through flow from A to Z, you have to
remember what should come into the flow action and what should come out, to
successfully pass a token to the further actions.
To increase security, configuration in our case takes all parameters from the
application registry table, where client secret value is encrypted, and by using input
type Password (2 Way Encrypted) it’s impossible to catch client secret password
from any logs. On the next page you will find an example of how to do that.

11

Chapter 3

B) Flow Action

First, open the application registry table (oauth_entity) and create
a new record. There are few options to choose from, but the 3rd
option fits our needs the most. So I recommend to choose
“Connect to a third party OAuth Provider”. Then provide all
mandatory fields. Notice that once you set up a client secret it will
be encrypted as long as you toggle it to view it’s content, without
a specific role to the table, and write access to the records. No
one is able to see it’s value.

12

Chapter 3

Now, open flow designer and create a new action, name it and
prepare inputs that will be passed to the action. As an input, use
strings with all body parameters needed to send a rest message.

Following the security - client secret input variable change to
“Password (2 Way Encrypted”. This will make sure that logs will
show only asterisks instead of the value. Remember also to look
up first in the flow record with all details that were created in the
previous step - you can use sys_id for instant matches.

13

Chapter 3

14

Chapter 3

Once all inputs are ready to be passed on further, you should
create a REST step from the action steps left in the menu to
process received data.
Here in the REST Step, you do the most important part which is
almost a reflection of what has been done before in HTTP
Message.

Rest step gives a few more options which will allow you to
diversify the solution and automate some data, except manually
providing it to the action, for example by using credential & alias
record. This example shows manually built rest API call, because
we here decided to have this value hardcoded instead of jumping
between tables and records.

15

Chapter 3

To build Endpoint URL manually it’s enough to choose “Define
connection inline”, which lets you type base url and doesn’t
require the use of credential alias. If the integration goes through
multiple tenants it’s good to put the rest of the endpoint url within
the “Resource path” where you can pass incoming tenants as a
parameter from the data pill. Obviously everything can be done
under the base URL field, but in my case some messages were
throwing errors. I could not find out why it behaved like that. The
HTTP Method is the POST like in the previous example. This is
an interesting thing, because in comparison to the previously
built Rest Message, Rest step within flow actions successfully
process JSON payloads which makes building a Message much
more efficient and friendly. If for some reason there needs to be
url-specific, there is a possibility to change request type from
“Multipart” (which supports JSON) to “text” and use values
generated from postman code snippet.

16

Chapter 3

Now, to have a well formatted JSON response, additional step
called “JSON Parser Step” is a must. Otherwise the response will
be in unreadable format and the response wouldn’t be passed
further. This step is simple, but in my opinion not intuitive enough
by first glance.

Remember that a source data always has a response body
which contains needed values. Paste the whole payload you
receive after getting a token and click “Generate Target”. This will
generate a fully parsed, formatted and structured hierarchy of
your JSON response. Thanks to this, the response will be shown
on the data pill and can be transferred as an output of the action.

17

Chapter 3

At last, the only thing left is to create a new object-type variable
and pass the generated root target from the previous action step.
This will generate a full structure of response and allows passing
output to other actions to authenticate next actions.

18

Chapter 3

How to pass action output further within the flow? Once the
output and whole action is saved, published and selected in the
flow, it should be visible onto the data pill panel and by drag &
drop. Simply pass a token to the other action’s input field and
then from the input, pass it directly to the Rest message header.

19

Chapter 3

CHAPTER 4

Security

Some people may ask if doing authentication this way is secure
enough if you are dealing with internal customer data and the
answer to that question is - No, it’s not secured enough, but
there is no security that you cannot break. If we take a look on
the presented solution, there are actually some levels of security
but mainly done by the Microsoft Azure environment:

1. Bearer token and the default short lifespan (1h)
2. Authentication which requires at least 3 unique

parameters to authenticate (client id, tenant id, client
secret)

3. Encrypted token
4. Application and delegated access types which

depends of the needs and accessibility can be
restricted

There is a high chance that even if someone gets the whole
bearer token key, it can already be expired and it’s working only
for a specific session. Token changes every time a client secret is
an equivalent of giving someone’s password - we should let such
things be easily accessed.

If I would have to choose a more secure solution from those two,
only by trusting OOTB functionalities, I would recommend getting
token by using flow. Depending on the requirements, it’s possible
to build using Rest HTTP Messages. Does this means that we
are out of options for this one? Absolutely not. Obviously it’s
harder to manage, develop and probably it will require some
additional scripts. If we as developers want to create a secure
solution, we can use for example the well working
GlideEncrypter.
(https://docs.servicenow.com/bundle/rome-application-developm
ent/page/app-store/dev_portal/API_reference/GlideEncrypter/con
cept/GlideEncrypterAPI.html?cshalt=yes)

The advantage of using GlideEncrypter is that instead of
hardcoding values within HTTP Messages, there is a way to run
API calls directly from the script, and include and pass value to
the body of our message in an encrypted way.

20

https://docs.servicenow.com/bundle/rome-application-development/page/app-store/dev_portal/API_reference/GlideEncrypter/concept/GlideEncrypterAPI.html?cshalt=yes
https://docs.servicenow.com/bundle/rome-application-development/page/app-store/dev_portal/API_reference/GlideEncrypter/concept/GlideEncrypterAPI.html?cshalt=yes
https://docs.servicenow.com/bundle/rome-application-development/page/app-store/dev_portal/API_reference/GlideEncrypter/concept/GlideEncrypterAPI.html?cshalt=yes

From the ServiceNow perspective, the most susceptible data in
such authentication type is to leave parameters unprotected
which has the biggest impact on the Azure security. So it’s
important to additionally protect, hide and encrypt sensitive data.
What we can do as developers and from a ServiceNow
perspective, is to make access to this data as hard as possible.
Not only rely on the access controls and role-based structure,
because even without admin role, some tables, logs and flow
executions are at least readable. This is causing a high risk of
giving access to for example the client secret to undesirable
persons. For some it might be gibberish, but for some a potential
backdoor to strike.

One of the security improvements has been provided by using
application registry to at least hide client secret password and
then make 2 Way encrypted input within the flow, which is
returning encrypted value.

21

Chapter 4

Summary As it turns out, Microsoft and ServiceNow can deliver massive and well-working

solutions, but even such big players can’t predict all possible cases and sometimes

some of them are not worth developing. In such cases, we as developers are

obligated to solve these challenges and leave official documentation and standards,

to rather create our own solutions based on our experience and different best

practices built ourselves. Presented solution, if continuously developed, may

someday be considered as a real solution, even for bigger players on the market. It

is also good to have a backup if traditional solutions are failing. With some practice it

can also give as an advantage by delivering your own secured solution, which

definitely will make you visible for others in the global market.

22

Want to learn more?

Contact the Cloud People
info@thecloudpeople.com
www.thecloudpeople.com

The Cloud People is a certified ServiceNow and Google Cloud Platform
Partner, and authorized Google Workspace (earlier G Suite) Reseller. We
help and guide organizations transform their business to the cloud and
gain and utilize the competitive advantages from one of the best cloud
platform solutions on the market today.

mailto:info@thecloudpeople.com
http://www.thecloudpeople.com

